Learning to create data-integrating queries
نویسندگان
چکیده
The number of potentially-related data resources available for querying — databases, data warehouses, virtual integrated schemas — continues to grow rapidly. Perhaps no area has seen this problem as acutely as the life sciences, where hundreds of large, complex, interlinked data resources are available on fields like proteomics, genomics, disease studies, and pharmacology. The schemas of individual databases are often large on their own, but users also need to pose queries across multiple sources, exploiting foreign keys and schema mappings. Since the users are not experts, they typically rely on the existence of pre-defined Web forms and associated query templates, developed by programmers to meet the particular scientists’ needs. Unfortunately, such forms are scarce commodities, often limited to a single database, and mismatched with biologists’ information needs that are often context-sensitive and span multiple databases. We present a system with which a non-expert user can author new query templates and Web forms, to be reused by anyone with related information needs. The user poses keyword queries that are matched against source relations and their attributes; the system uses sequences of associations (e.g., foreign keys, links, schema mappings, synonyms, and taxonomies) to create multiple ranked queries linking the matches to keywords; the set of queries is attached to a Web query form. Now the user and his or her associates may pose specific queries by filling in parameters in the form. Importantly, the answers to this query are ranked and annotated with data provenance, and the user provides feedback on the utility of the answers, from which the system ultimately learns to assign costs to sources and associations according to the user’s specific information need, as a result changing the ranking of the queries used to generate results. We evaluate the effectiveness of our method against “gold standard” costs from domain experts and demonstrate the method’s scalability.
منابع مشابه
Apply Uncertainty in Document-Oriented Database (MongoDB) Using F-XML
As moving to big data world where data is increasing in unstructured way with high velocity, there is a need of data-store to store this bundle amount of data. Traditionally, relational databases are used which are now not compatible to handle this large amount of data, so it is needed to move on to non-relational data-stores. In the current study, we have proposed an extension of the Mongo...
متن کاملApply Uncertainty in Document-Oriented Database (MongoDB) Using F-XML
As moving to big data world where data is increasing in unstructured way with high velocity, there is a need of data-store to store this bundle amount of data. Traditionally, relational databases are used which are now not compatible to handle this large amount of data, so it is needed to move on to non-relational data-stores. In the current study, we have proposed an extension of the Mongo...
متن کاملRelational Databases Query Optimization using Hybrid Evolutionary Algorithm
Optimizing the database queries is one of hard research problems. Exhaustive search techniques like dynamic programming is suitable for queries with a few relations, but by increasing the number of relations in query, much use of memory and processing is needed, and the use of these methods is not suitable, so we have to use random and evolutionary methods. The use of evolutionary methods, beca...
متن کاملAn Efficient Information Retrieval from Domain Expert Using Active Learning with Generalized Queries
In recent years, domain-driven data mining (D3M) has received extensive attention in data mining. Unlike the traditional data-driven data mining, D3M tends to discover actionable knowledge by tightly integrating the data mining methods with the domain-specific business processes. However, in most cases, the domain specific actionable knowledge cannot be discovered without the support of domain ...
متن کاملA method for integrating and ranking the evidence for biochemical pathways by mining reactions from text
MOTIVATION To create, verify and maintain pathway models, curators must discover and assess knowledge distributed over the vast body of biological literature. Methods supporting these tasks must understand both the pathway model representations and the natural language in the literature. These methods should identify and order documents by relevance to any given pathway reaction. No existing sy...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- PVLDB
دوره 1 شماره
صفحات -
تاریخ انتشار 2008